Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 62, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448403

RESUMO

Natural killer T cell lymphoma (NKTCL) is highly aggressive, with advanced stage patients poorly responding to intensive chemotherapy. To explore effective and safe treatment for newly diagnosed advanced stage NKTCL, we conducted a phase II study of anti-metabolic agent pegaspargase plus PD-1 antibody sintilimab (NCT04096690). Twenty-two patients with a median age of 51 years (range, 24-74) were enrolled and treated with induction treatment of pegaspargase 2500 IU/m2 intramuscularly on day 1 and sintilimab 200 mg intravenously on day 2 for 6 cycles of 21 days, followed by maintenance treatment of sintilimab 200 mg for 28 cycles of 21 days. The complete response and overall response rate after induction treatment were 59% (95%CI, 43-79%) and 68% (95%CI, 47-84%), respectively. With a median follow-up of 30 months, the 2 year progression-free and overall survival rates were 68% (95%CI, 45-83%) and 86% (95%CI, 63-95%), respectively. The most frequently grade 3/4 adverse events were neutropenia (32%, n = 7) and hypofibrinogenemia (18%, n = 4), which were manageable and led to no discontinuation of treatment. Tumor proportion score of PD-L1, peripheral blood high-density lipoprotein cholesterol, and apolipoprotein A-I correlated with good response, while PD-1 on tumor infiltrating lymphocytes and peripheral Treg cells with poor response to pegaspargase plus sintilimab treatment. In conclusion, the chemo-free regimen pegaspargase plus sintilimab was effective and safe in newly diagnosed, advanced stage NKTCL. Dysregulated lipid profile and immunosuppressive signature contributed to treatment resistance, providing an alternative therapeutic approach dual targeting fatty acid metabolism and CTLA-4 in NKTCL.


Assuntos
Anticorpos Monoclonais Humanizados , Asparaginase , Linfoma , Células T Matadoras Naturais , Polietilenoglicóis , Humanos , Receptor de Morte Celular Programada 1 , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem
2.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422020

RESUMO

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Idoso , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Envelhecimento/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Prognóstico
3.
Acta Pharmacol Sin ; 45(3): 633-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38017299

RESUMO

Understanding the molecular pathogenesis of acute myeloid leukemia (AML) with well-defined genomic abnormalities has facilitated the development of targeted therapeutics. Patients with t(8;21) AML frequently harbor a fusion gene RUNX1-RUNX1T1 and KIT mutations as "secondary hit", making the disease one of the ideal models for exploring targeted treatment options in AML. In this study we investigated the combination therapy of agents targeting RUNX1-RUNX1T1 and KIT in the treatment of t(8;21) AML with KIT mutations. We showed that the combination of eriocalyxin B (EriB) and homoharringtonine (HHT) exerted synergistic therapeutic effects by dual inhibition of RUNX1-RUNX1T1 and KIT proteins in Kasumi-1 and SKNO-1 cells in vitro. In Kasumi-1 cells, the combination of EriB and HHT could perturb the RUNX1-RUNX1T1-responsible transcriptional network by destabilizing RUNX1-RUNX1T1 transcription factor complex (AETFC), forcing RUNX1-RUNX1T1 leaving from the chromatin, triggering cell cycle arrest and apoptosis. Meanwhile, EriB combined with HHT activated JNK signaling, resulting in the eventual degradation of RUNX1-RUNX1T1 by caspase-3. In addition, HHT and EriB inhibited NF-κB pathway through blocking p65 nuclear translocation in two different manners, to synergistically interfere with the transcription of KIT. In mice co-expressing RUNX1-RUNX1T1 and KITN822K, co-administration of EriB and HHT significantly prolonged survival of the mice by targeting CD34+CD38- leukemic cells. The synergistic effects of the two drugs were also observed in bone marrow mononuclear cells (BMMCs) of t(8;21) AML patients. Collectively, this study reveals the synergistic mechanism of the combination regimen of EriB and HHT in t(8;21) AML, providing new insight into optimizing targeted treatment of AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Diterpenos , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Mepesuccinato de Omacetaxina/farmacologia , Mepesuccinato de Omacetaxina/uso terapêutico , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/uso terapêutico , Translocação Genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
4.
Sci Bull (Beijing) ; 68(21): 2607-2619, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37798178

RESUMO

Epstein-Barr virus (EBV) is the oncogenic driver of multiple cancers. However, the underlying mechanism of virus-cancer immunological interaction during disease pathogenesis remains largely elusive. Here we reported the first comprehensive proteogenomic characterization of natural killer/T-cell lymphoma (NKTCL), a representative disease model to study EBV-induced lymphomagenesis, incorporating genomic, transcriptomic, and in-depth proteomic data. Our multi-omics analysis of NKTCL revealed that EBV gene pattern correlated with immune-related oncogenic signaling. Single-cell transcriptome further delineated the tumor microenvironment as immune-inflamed, -deficient, and -desert phenotypes, in association with different setpoints of cancer-immunity cycle. EBV interacted with transcriptional factors to provoke GPCR interactome (GPCRome) reprogramming. Enhanced expression of chemokine receptor-1 (CCR1) on malignant and immunosuppressive cells modulated virus-cancer interaction on microenvironment. Therapeutic targeting CCR1 showed promising efficacy with EBV eradication, T-cell activation, and lymphoma cell killing in NKTCL organoid. Collectively, our study identified a previously unknown GPCR-mediated malignant progression and translated sensors of viral molecules into EBV-specific anti-cancer therapeutics.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma , Células T Matadoras Naturais , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Proteômica , Linfoma/complicações , Células T Matadoras Naturais/patologia , Microambiente Tumoral/genética
5.
Zookeys ; 1173: 131-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577154

RESUMO

The monotypic freshwater mussel genus Diaurora Cockerell, 1903 has long been enigmatic due to its rarity and morphological confusion with Acuticosta. In this study, we comprehensively redescribed Diauroraaurorea (Heude, 1883) through a detailed analysis of shell morphology and molecular phylogenetics of recently collected specimens. Moreover, a new species, Diauroralaevesp. nov., was identified from the Fuyishui River, a tributary of the Zishui River in Shaoyang County, Shaoyang City, Hunan Province, China. Molecular phylogenetic analyses showed that D.aurorea and D.laevesp. nov. were reciprocally monophyletic and formed a clade as sister to Schistodesmus. Our study underscores the necessity of further exploring the diversity of freshwater mussels in understudied small tributaries throughout China.

6.
Front Immunol ; 14: 1210909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638009

RESUMO

Mast cell leukemia is a rare and aggressive disease, predominantly with KIT D816V mutation. With poor response to conventional poly-chemotherapy, mast cell leukemia responded to the midostaurin treatment with a 50% overall response rate (ORR), but complete remission rate is approximately 0%. Therefore, the potential mechanisms of midostaurin resistance and the exact impacts of midostaurin on both gene expression profile and mast cell leukemia microenvironment in vivo are essential for design tailored combination therapy targeting both the tumor cells and the tumor microenvironment. Here we report a 59-year-old male mast cell leukemia patient with KIT F522C mutation treated with midostaurin. Single-cell sequencing of peripheral blood and whole exome sequencing (WES) of bone marrow were performed before and 10 months after midostaurin treatment. In accordance with the clinical response, compared to the pretreatment aberration, the decline of mast cells and increase of T-, NK, B-cells in peripheral blood, and the decrease of the KIT F522C mutation burden in bone marrow were observed. Meanwhile, the emergence of RUNX1 mutation, upregulations of genes expression (RPS27A, RPS6, UBA52, RACK1) on tumor cells, and increased frequencies of T and NK cells with TIGIT, CTLA4, and LAG3 expression were observed after midostaurin treatment, predicting the disease progression of this patient. As far as we know, this is the first case reporting the clinical, immunological, and molecular changes in mast cell leukemia patients before and after midostaurin treatment, illustrating the in vivo mechanisms of midostaurin resistance in mast cell leukemia, providing important clues to develop a sequential option to circumvent tumor progression after targeting oncogene addiction and prolong patients' survival.


Assuntos
Leucemia de Mastócitos , Masculino , Humanos , Pessoa de Meia-Idade , Leucemia de Mastócitos/tratamento farmacológico , Leucemia de Mastócitos/genética , Estaurosporina/uso terapêutico , Terapia Combinada , Mastócitos , Microambiente Tumoral
7.
Proc Natl Acad Sci U S A ; 119(49): e2211429119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442087

RESUMO

The current classification of acute myeloid leukemia (AML) relies largely on genomic alterations. Robust identification of clinically and biologically relevant molecular subtypes from nongenomic high-throughput sequencing data remains challenging. We established the largest multicenter AML cohort (n = 655) in China, with all patients subjected to RNA sequencing (RNA-Seq) and 619 (94.5%) to targeted or whole-exome sequencing (TES/WES). Based on an enhanced consensus clustering, eight stable gene expression subgroups (G1-G8) with unique clinical and biological significance were identified, including two unreported (G5 and G8) and three redefined ones (G4, G6, and G7). Apart from four well-known low-risk subgroups including PML::RARA (G1), CBFB::MYH11 (G2), RUNX1::RUNX1T1 (G3), biallelic CEBPA mutations or -like (G4), four meta-subgroups with poor outcomes were recognized. The G5 (myelodysplasia-related/-like) subgroup enriched clinical, cytogenetic and genetic features mimicking secondary AML, and hotspot mutations of IKZF1 (p.N159S) (n = 7). In contrast, most NPM1 mutations and KMT2A and NUP98 fusions clustered into G6-G8, showing high expression of HOXA/B genes and diverse differentiation stages, from hematopoietic stem/progenitor cell down to monocyte, namely HOX-primitive (G7), HOX-mixed (G8), and HOX-committed (G6). Through constructing prediction models, the eight gene expression subgroups could be reproduced in the Cancer Genome Atlas (TCGA) and Beat AML cohorts. Each subgroup was associated with distinct prognosis and drug sensitivities, supporting the clinical applicability of this transcriptome-based classification of AML. These molecular subgroups illuminate the complex molecular network of AML, which may promote systematic studies of disease pathogenesis and foster the screening of targeted agents based on omics.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Transcriptoma , Leucemia Mieloide Aguda/genética , Diferenciação Celular/genética , Células-Tronco Hematopoéticas
8.
Front Oncol ; 12: 885011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276140

RESUMO

Lymphoma cells expressing CD5 (CD5+) confer inferior outcome of diffuse large B-cell lymphoma (DLBCL), especially in non-MYC/BCL2 double expressor (non-DE) patients. In tumor microenvironment, CD5+ non-DE tumor revealed increased proportion of immunosuppressive M2 macrophages and enhanced pathways related to macrophage activation and migration. In accordance to M2 activation, lipid metabolism was upregulated, including fatty acid uptake and fatty acid oxidation, which supplied energy for M2 macrophage polarization and activation. Meanwhile, CD36 expression was upregulated and strongly correlated to the proportion of M2 macrophages in CD5+ non-DE DLBCL. In vitro, a DLBCL cell line (LY10) overexpressing CD5 significantly increased M2 proportion in comparison with control when cocultured with peripheral blood mononuclear cells (PBMCs). The addition of metformin significantly decreased the M2 proportion and the CD36 expression level in the coculture systems, indicating that metformin could target altered lipid metabolism and decrease M2 macrophages in DLBCL, especially in CD5+ non-DE lymphoma. In conclusion, enhanced lipid metabolism and M2 macrophage activation contributed to the immunosuppressive tumor microenvironment and could be potential therapeutic targets in CD5+ non-DE DLBCL.

9.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1754-1764, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35534246

RESUMO

Astragali Radix, a medicinal herb for invigorating Qi, has anti-aging, anti-tumor, immunoregulatory, blood sugar-and lipid-lowering, anti-fibrosis, anti-radiation and other pharmacological effects. This article reviewed the studies about the chemical components and pharmacological effects of Astragali Radix. According to the theory of quality markers(Q-markers) of Chinese medicinal materials, we predicted the Q-markers of Astragali Radix from traditional efficacy, chemical component validity, measurability, plant phylogeny, and pharmacokinetis. The results showed that total polysaccharides, flavonoids(e.g., calycosin-7-O-ß-D-glucoside, formononetin, calycosin, quercetin, and ononin), and saponins(e.g., astragalosides Ⅱ, Ⅲ, and Ⅳ) can be taken as the main Q-markers. This review lays a foundation for regulating the quality research and standard establishment of Astragali Radix, and benefits the control and quality supervision of the production process of Astragali Radix and its related products.


Assuntos
Astrágalo , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides , Raízes de Plantas
10.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385357

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Transcriptoma , Criança , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
11.
Blood ; 139(7): 1080-1097, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34695195

RESUMO

In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/metabolismo , Fosfolipase C gama/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Animais , Autorrenovação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/genética , Fosfolipase C gama/genética , Proteoma , Proteína 1 Parceira de Translocação de RUNX1/genética , Transcriptoma , Translocação Genética
12.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2915-2922, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34664465

RESUMO

Human activity intensity is mostly used to quantify the degree of human influence on natural systems, with obvious spatial variability. With Lashihai watershed in Yunnan Province as an example, we used SPOT remote sensing images to update land use data, and obtained a comprehensive index of land use intensity after gridding by assigning weights to different land types, which was considered as the basic human activity intensity. The local tourism activities (horseback riding and boating) were also included. The horseback riding and boating were spatially quantified according to the location of horse farms and the abundance of horses and boats which were superimposed with the basic human activity intensity on the spatial scale of 100 m×100 m to obtain a more accurate comprehensive human activity intensity and to analyze the spatial variations. The results showed that the gridding and the kernel density analysis improved the accuracy of spatial analysis and reflected the spatial superposition and diffusion effects. In the comprehensive human activity intensity map of Lashihai watershed, the highest intensity value of water area was at the mouth of the sea, the lowest intensity value was at the center of the sea, and the overall trend of intensity gradually decreased from the surrounding to the middle. The land settlement had the highest intensity, the intensity value of the agricultural land gathering area was at the middle level, and the intensity of human activities in the forestry area of higher altitude was lower. The comprehensive human activity intensity in the water area of the Lashihai watershed varied most obviously, and differed greatly from the basic human activity intensity. Although there were many local characteristic tourism activities in Yunnan-Guizhou Plateau Wetland scenic area, but their land use types did not change. We need to take them into account when quantifying the intensity of human activities.


Assuntos
Monitoramento Ambiental , Áreas Alagadas , Animais , China , Cavalos , Atividades Humanas , Análise Espacial
13.
Mitochondrial DNA B Resour ; 6(9): 2575-2577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377833

RESUMO

The genus Cuneopsis Simpson, 1900 comprises seven valid species, and Cuneopsis celtiformis (Heude, 1874) is the type species of this genus. Previous phylogenetic studies using complete mitochondrial genomes showed that Cuneopsis was not monophyletic, but the result was hampered by incomplete species sampling and lack of the type species of this genus. In this study, we collected C. celtiformis from the type locality and determined its complete maternal mitochondrial genome. This mitogenome is 15,922 bp in length and contains 14 protein-coding genes (including one F-orf), two rRNA genes, 22 tRNA genes, and 1 putative control region. Our mitochondrial phylogenomic analysis confirms that currently recognized genus Cuneopsis is polyphyletic, and C. celtiformis is the closest to C. heudei with high maximum likelihood bootstrap support value. Comprehensive sampling of all Cuneopsis species is needed for phylogenetic analysis to erect new genera in future studies.

14.
Cell Death Dis ; 12(6): 568, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078881

RESUMO

GATA2, a key transcription factor in hematopoiesis, is frequently mutated in hematopoietic malignancies. How the GATA2 mutants contribute to hematopoiesis and malignant transformation remains largely unexplored. Here, we report that Gata2-L359V mutation impeded hematopoietic differentiation in murine embryonic and adult hematopoiesis and blocked murine chronic myeloid leukemia (CML) cell differentiation. We established a Gata2-L359V knockin mouse model in which the homozygous Gata2-L359V mutation caused major defects in primitive erythropoiesis with an accumulation of erythroid precursors and severe anemia, leading to embryonic lethality around E11.5. During adult life, the Gata2-L359V heterozygous mice exhibited a notable decrease in bone marrow (BM) recovery under stress induction with cytotoxic drug 5-fluorouracil. Using RNA sequencing, it was revealed that homozygous Gata2-L359V suppressed genes related to embryonic hematopoiesis in yolk sac, while heterozygous Gata2-L359V dysregulated genes related to cell cycle and proliferation in BM Lin-Sca1+c-kit+ cells. Furthermore, through chromatin immunoprecipitation sequencing and transactivation experiments, we found that this mutation enhanced the DNA-binding capacity and transcriptional activities of Gata2, which was likely associated with the altered expression of some essential genes during embryonic and adult hematopoiesis. In mice model harboring BCR/ABL, single-cell RNA-sequencing demonstrated that Gata2-L359V induced additional gene expression profile abnormalities and partially affected cell differentiation at the early stage of myelomonocytic lineage, evidenced by the increase of granulocyte-monocyte progenitors and monocytosis. Taken together, our study unveiled that Gata2-L359V mutation induces defective hematopoietic development and blocks the differentiation of CML cells.


Assuntos
Fator de Transcrição GATA2/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Fator de Transcrição GATA2/genética , Hematopoese , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação
15.
Proc Natl Acad Sci U S A ; 117(33): 20117-20126, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747558

RESUMO

t(8;21)(q22;q22) acute myelogenous leukemia (AML) is morphologically characterized by a continuum of heterogeneous leukemia cells from myeloblasts to differentiated myeloid elements. Thus, t(8;21) AML is an excellent model for studying heterogeneous cell populations and cellular evolution during disease progression. Using integrative analyses of immunophenotype, RNA-sequencing (RNA-seq), and single-cell RNA-sequencing (scRNA-seq), we identified three distinct intrapatient leukemic cell populations that were arrested at different stages of myeloid differentiation: CD34+CD117dim blasts, CD34+CD117bri blasts, and abnormal myeloid cells with partial maturation (AM). CD117 is also known as c-KIT protein. CD34+CD117dim cells were blocked in the G0/G1 phase at disease onset, presenting with the regular morphology of myeloblasts showing features of granulocyte-monocyte progenitors (GMP), and were drug-resistant to chemotherapy. Genes associated with cell migration and adhesion (LGALS1, EMP3, and ANXA2) were highly expressed in the CD34+CD117dim population. CD34+CD117bri blasts were blocked a bit later than the CD34+CD117dim population in the hematopoietic differentiation stage and displayed high proliferation ability. AM cells, which bear abnormal myelocyte morphology, especially overexpressed granule genes AZU1, ELANE, and PRTN3 and were sensitive to chemotherapy. scRNA-seq at different time points identified CD34+CD117dim blasts as an important leukemic cluster that expanded at postrelapse refractory stage after several cycles of chemotherapy. Patients with t(8;21) AML with a higher proportion of CD34+CD117dim cells had significantly worse clinical outcomes than those with a lower CD34+CD117dim proportion. Univariate and multivariate analyses identified CD34+CD117dim proportion as an independent factor for poor disease outcome. Our study provides evidence for the multidimensional heterogeneity of t(8;21)AML and may offer new tools for future disease stratification.


Assuntos
Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/patologia , Subpopulações de Linfócitos T/classificação , Subpopulações de Linfócitos T/metabolismo , Adulto , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Transcriptoma
16.
Cancer Cell ; 37(3): 403-419.e6, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32183952

RESUMO

Natural killer/T cell lymphoma (NKTCL) is an aggressive and heterogeneous entity of non-Hodgkin lymphoma, strongly associated with Epstein-Barr virus (EBV) infection. To identify molecular subtypes of NKTCL based on genomic structural alterations and EBV sequences, we performed multi-omics study on 128 biopsy samples of newly diagnosed NKTCL and defined three prominent subtypes, which differ significantly in cell of origin, EBV gene expression, transcriptional signatures, and responses to asparaginase-based regimens and targeted therapy. Our findings thus identify molecular networks of EBV-associated pathogenesis and suggest potential clinical strategies on NKTCL.


Assuntos
Herpesvirus Humano 4/genética , Linfoma de Células T/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Genômica , Humanos , Linfoma de Células T/mortalidade , Linfoma de Células T/patologia , Linfoma de Células T/virologia , Terapia de Alvo Molecular , Mutação , Células T Matadoras Naturais/patologia , Filogenia , Transcriptoma , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
17.
Proc Natl Acad Sci U S A ; 116(46): 23264-23273, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31662475

RESUMO

Glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) plays a critical role in cancer metabolism by coordinating glycolysis and biosynthesis. A well-validated PGAM1 inhibitor, however, has not been reported for treating pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest malignancies worldwide. By uncovering the elevated PGAM1 expressions were statistically related to worse prognosis of PDAC in a cohort of 50 patients, we developed a series of allosteric PGAM1 inhibitors by structure-guided optimization. The compound KH3 significantly suppressed proliferation of various PDAC cells by down-regulating the levels of glycolysis and mitochondrial respiration in correlation with PGAM1 expression. Similar to PGAM1 depletion, KH3 dramatically hampered the canonic pathways highly involved in cancer metabolism and development. Additionally, we observed the shared expression profiles of several signature pathways at 12 h after treatment in multiple PDAC primary cells of which the matched patient-derived xenograft (PDX) models responded similarly to KH3 in the 2 wk treatment. The better responses to KH3 in PDXs were associated with higher expression of PGAM1 and longer/stronger suppressions of cancer metabolic pathways. Taken together, our findings demonstrate a strategy of targeting cancer metabolism by PGAM1 inhibition in PDAC. Also, this work provided "proof of concept" for the potential application of metabolic treatment in clinical practice.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Fosfoglicerato Mutase/antagonistas & inibidores , Regulação Alostérica , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Terapia de Alvo Molecular , Transplante de Neoplasias , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
18.
Proc Natl Acad Sci U S A ; 115(50): E11711-E11720, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30487223

RESUMO

Most B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified. Apart from extending eight previously described subgroups (G1 to G8 associated with MEF2D fusions, TCF3-PBX1 fusions, ETV6-RUNX1-positive/ETV6-RUNX1-like, DUX4 fusions, ZNF384 fusions, BCR-ABL1/Ph-like, high hyperdiploidy, and KMT2A fusions), we defined six additional gene expression subgroups: G9 was associated with both PAX5 and CRLF2 fusions; G10 and G11 with mutations in PAX5 (p.P80R) and IKZF1 (p.N159Y), respectively; G12 with IGH-CEBPE fusion and mutations in ZEB2 (p.H1038R); and G13 and G14 with TCF3/4-HLF and NUTM1 fusions, respectively. In pediatric BCP ALL, subgroups G2 to G5 and G7 (51 to 65/67 chromosomes) were associated with low-risk, G7 (with ≤50 chromosomes) and G9 were intermediate-risk, whereas G1, G6, and G8 were defined as high-risk subgroups. In adult BCP ALL, G1, G2, G6, and G8 were associated with high risk, while G4, G5, and G7 had relatively favorable outcomes. This large-scale transcriptome sequence analysis of BCP ALL revealed distinct molecular subgroups that reflect discrete pathways of BCP ALL, informing disease classification and prognostic stratification. The combined results strongly advocate that RNA sequencing be introduced into the clinical diagnostic workup of BCP ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B/classificação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transcriptoma , Adulto , Criança , Bases de Dados de Ácidos Nucleicos , Feminino , Humanos , Masculino , Modelos Genéticos , Mutação , Fusão Oncogênica , Proteínas de Fusão Oncogênica/genética , Prognóstico , Análise de Sequência de RNA
19.
Proc Natl Acad Sci U S A ; 115(2): 373-378, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279377

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a clonal malignancy of immature T cells. Recently, the next-generation sequencing approach has allowed systematic identification of molecular features in pediatric T-ALL. Here, by performing RNA-sequencing and other genomewide analysis, we investigated the genomic landscape in 61 adult and 69 pediatric T-ALL cases. Thirty-six distinct gene fusion transcripts were identified, with SET-NUP214 being highly related to adult cases. Among 18 previously unknown fusions, ZBTB16-ABL1, TRA-SALL2, and involvement of NKX2-1 were recurrent events. ZBTB16-ABL1 functioned as a leukemogenic driver and responded to the effect of tyrosine kinase inhibitors. Among 48 genes with mutation rates >3%, 6 were newly found in T-ALL. An aberrantly overexpressed short mRNA transcript of the SLC17A9 gene was revealed in most cases with overexpressed TAL1, which predicted a poor prognosis in the adult group. Up-regulation of HOXA, MEF2C, and LYL1 was often present in adult cases, while TAL1 overexpression was detected mainly in the pediatric group. Although most gene fusions were mutually exclusive, they coexisted with gene mutations. These genetic abnormalities were correlated with deregulated gene expression markers in three subgroups. This study may further enrich the current knowledge of T-ALL molecular pathogenesis.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transcriptoma , Adulto , Criança , Estudos de Coortes , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Células HEK293 , Humanos , Células Jurkat , Estimativa de Kaplan-Meier , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...